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An invariant submodel, constructed using a subalgebra of the sum of the rotation, time transfer and Galilean transfer is considered 
within the framework of the Podmodeli program [1]. A group classification is constructed and simple solutions are obtained. 
The submodel is reduced to symmetrical form. Assertions are made on the hyperbolicity, characteristics and force discontinuities. 
The necessary conditions for solutions to exist without discontinuities on the axis of symmetry are derived and their asymptotic 
submodel is investigated. C 1998 Elsevier Science Ltd. All rights reserved. 

1. T H E  S U B M O D E L  E Q U A T I O N S  A N D  C H A R A C T E R I S T I C S  

The equations of gas dynamics allow of an ll-parameter continuous group of transformations with Lie 
algebra Ln [1]. A class of group solutions corresponds to each subalgebra. After all dissimilar subalgebras 
were enumerated, a study of the properties of the group solutions began [2--6]. Third-rank invariant 
submodels correspond to one-dimensional subalgebras. The submodel of rotational motions of a gas 
in a uniform force field is determined by the invariant solutions of the one-dimensional algebras 
H = {IL~4 + X7 + I~tX10}, [~ ~ 0, where X4 = tOx = O. is the operator of Galilean transfer with 
respect to x, X7 = 30 !is the operator of rotation around the x axis and Xlo = 3t is the operator of time 
transfer. 

Cylindrical coordinatesx, r, 0 are used. The projections of the velocity vector onto the corresponding 
cylindrical unit vectors are denoted by U, V and W. The representation of the invariant solution has 
the form 

U = t + u(q, r, s), V = u(q, r, s), W = ~J-Zr(l + w(q,  r, s)) 

p=p(q,r ,s) ,  p=p(q,r,s); q=x-t2[2, s=J$O-t 
(1.1) 

The equations of the submodel are obtained by substituting representation (1.1) into the equations 
of gas dynamics 

p D u + ( p q ,  pr,~j2r-2ps) = pa, A-IDp+divu = - r - ~  

Dp+pd ivu=-r - lpo  or DS=O 

(1.2) 

where 

D = uaq + ~ r  + wa.¢, u = (u,v, w), a = (-I,13-2r(1 + w) 2,-2r-~ (1 + w)) 

d i v u = U q + V r + W s ,  A=pc 2, c z •a f lap  

p = f(p, S) is the equation of state, p is the pressure, p is the density and S is the entropy. 
System (1.2) can be reduced to symmetrical form by a linear replacement of the velocities 

=,,, , , '=.,  "J=4";, b}4 

After these replacements its matrix form is 

D i f  i =D, f=(ul ,u2,u3,p,S)r  (1.3) 
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D = (d t, ~2, a3, a4, o)r, a4 = -v ;f~-~c/2 + ~.~j ) 

di=pbk ak +P~xnc~kc~  m, x I =q, x 2 =r, 

~c~v k o 

0 pc~ ~ 
B i = 0 0 

c~ c~ 
0 0 

gl = g2 = 1, g3=r-2~2 

0 big i 
0 b?g i 

b?e,' 
4 
0 0 

0 
0 
0 , 
0 

I 

X 3 _$ 

i = 1,2,3 

Here 

d I = p(-  cos a + l~-2r(I + w) 2 sin a), d 2 = p(si, o~ + [~-2r(1 + w) 2 cos 0~) 

d3 =-13-~p(2 + w), d4 =-r-lop 

The eigenvalues of the matrices 13 / are 

Z';=u i, X~.3=pu i, Xi4.5=lui[p+A-t+((p-A-l)2+4g'(ui) -2)  )~] 

Hence, the matrix B ~ is positive definite if 

p > 0; u / > c (i = 1, 2), u 3 > ~cr -l (i = 3) 

System (1.2) can have three invariant characteristics [7] 

Co: uh¢ + vhr + whs = 0 (triple entropy) (1.5) 

C+ : (uhq +uh r +whs)2-c2(h~ +h2r +~2r-2hs2) = 0 (1.6) 

For real characteristics to exist the quadrature form on the left-hand side of (1.6) 

Q=~U~ r, U =c-2u@u-diag(1,1,~2r -2) 

must be of alternating sign. In this case system (1.2) is hyperbolic. 

Theorem 1.1. For a fixed solution the region in which system (1.2) is hyperbolic is given by the inequality 

u 2 + o 2 + 13-2r2w2 > c 2 (1.7) 

Proof. The eigenvalues of the form Q are found from the equation 

cj' = b y, c)2 = b~, cj3 = b~2r-2. (1.4) 

to determine the nine elements of the matrix C = (c~). 
Suppose  e ~ = (c[, 4, 4) T. Then l eil 2 = d ,  c i ' J  ~ 0 and the matrix C is determined, apart from 

the rotation, if we specify the direction of one of the vectors c i. 
For example, suppose c 3 = (0, 0, I]r-1) r. Then 

c R = (cos a, sin a, 0) r, c 2 = (cos or, -sin a,  0) r 

b I = (cos ~ sin a ,  0),  ~ = (-sin a,  cos  ~ 0), b3 = (0, 0, I$-lr) 

For the matrices ~ to be symmetrical the following six equations must be satisfied 
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:(~,) __ ~:,_j~2 + J2~,- J3 -- 0 

JI = c-2 I u 12 -2 - 132r -2, J2 = I + 21~2r -2 - c-2(u 2 +u 2)(I + l~2r -2) - 2c2w 2 

Y3 = f~-2r-2c-2(u2 +o  2 _ c 2) + c -2w2  

By Routh's  theorem [8, p. 475], the number ~ of positive roots of the polynomialf(Z.) is equal to the 
number of sign changes in the series of expressions 

H e n c e  we have the conditions which define the region of hyperbolicity. When 2 = 1 three cases are 
possible (a = c-2(u 2 + o 2) > 0, b = c-2w 2 > O) 

1) .I 1 >0,  J~Jt <J3, J3 >O~a+b>2+132r -2  

2) J l < 0 ,  J2J1 >J3, J3 > O = ~ a + b > l  +[  i2~z 

(1 + 132: 2) (a-2) + 2b < 0 

3) J l < 0 ,  J2Jl <J3, J3 >O=~{a+b<2+~2r-2,( l+~2r-2)(  a - 2 ) +  

+2b > 0} u {a + b < 1 + I~ 2 r -2, [~2 r-2b + a > i} 

By combining these regions we obtain the statement of the theorem. 
When 2 = 2 three cases of contradictory inequalities are possible 

1) J l > 0 ,  J2Jt>J3,  J3 < 0  

2) J l > 0 ,  J2Ji <./3, J3 < 0  

3) J l < 0 ,  J2Jl>J3, J 3 < 0  

Note. In physical varilables inequality (1.7) takes the form 

U 2 + V 2 + W 2 - 2tU - 2[~ -I rW + t o. + ~-2r2 > c 2 

The region defined by this inequality does not coincide with the region of supersonic flow. For sufficiently large 
r, system (1.2) is hyperIgolic in any solution defined for these r, if w ~ 0. 

The normal to the, invafiant surface is given by the formula 

n =(h2q +h2r +h2s)-)~(hq,hr,hs) 

The characteristics have the form 

Co: u.n = u,, = 0 (1~8) 

C~:: u n =:l:c(h 2 +h 2 +h2"C~th2.-s, ,--q +h2 +l~2r-2h2) ~ (1.9) 

The projection of the velocity vector onto the normal of the characteristics C depends on the position 
of the point on the surface. When r -- 13 the projection is identical with the velocity of sound c, when 
r > 13 it is less than c, and when r < 13 it is greater than c. 

The conditions on the characteristics [9, p. 54] are 

(D = U~q + u~  + wO.O: 

Co: DS = 0 

h~ ~ (pDu + pq + 1) = hr I (pDu + Pr - [~-2r( 1 + w) 2) = 

= h;  z (pO([~ -~ rw) + ~r-tp., - ~-tu (2 + w)) (h = h ° )  (1.10) 
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C± : hq(pDu+ pq +l)+hr(pDu+ pr-~-2r(l+w)2)+ 

+r-lhs(pD(rw)+~2r-lps +v(w+2)) +_pc(h2~ 2 2 J6 = + h ,  + h ~ )  x 
(1.11) x(h~ 2 2 -2  2 - ~  +hr +8 r hs) (Uq+Vr+Ws+A-IDp+r-lv) (h=h ±) 

• 0 + System (1.8)-( 1.11 ) of eight equations for the functions h ,  h-,  u, v, w, p, S, together with the equation 
of state, is the characteristic form of Eqs (1.2). 

2. THE STREAMLINE AND INTEGRALS 

The streamline for submodel (1.2) is specified by the following system of equations 

L: dq/u = dr~v= ds/w 

The conditions on the characteristic Co give two integrals of motion along the streamline: the entropy 
integral 

S(q, r, s) = S(L) 

and the Bernoulli integral 

u ~ + ~ + ~-~r2w 2 + i(c  ~) + 2q - fJ-~r~ = C(L)  (2.1) 

where I(c 2) = 2fc2o-ldp is a single-valued increasing function and such that I ---> 0 as c 2 --> 0 and 
I --> oo as p --> 0 [9, p. 101]. 

The following critical velocity c,(r, q, L) is defined 

C2. + I(C2, ) = C + r 2 - 2 q  

The region of hyperbolicity of the system can be established by comparing the expression o)2 = u 2 
2 2 2 + o + 13- rZw with the critical velocity. If co < c we have 

0) 2 + !(0~ 2 ) < O~ 2 + I ( c  2)  = C + r 2 - 2 q  = c2, + I(c2, ) < c 2 + i ( c  2 ) 

Then co < c. < c. 
If co > c, similar discussions lead to the relation co > c, > c. 
A stream tube consists of streamlines passing through the initial disc KR of radius R, perpendicular 

to the vector u at the centre of the disc. Suppose K is another section of the tube, while Y. is the side 
surface of the body TR, formed from the stream tube by two sections KR and K. On X the velocity u is 
perpendicular to the normal n. Integration of the third equation of system (1.2) over the body leads to 
the law of conservation of flow rate along the stream tube 

J" rpu nd~ = f rpu .naa = Q(TD 
KR /( 

In the limit as R ---> 0 we obtain the integral along the streamline 

where F = lim KKR -1 as R --> 0. 

rpJuIF = Q(L ) 

3. THE EQUATIONS OF THE FORCE DISCONTINUITY 

The invariant surface of the force discontinuity h(q, r, s) has a velocity in the direction of the 
normal 

D n =(thq +h~)(hZq +h~ +~2r-2h2s)-~ 
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We can write the relative velocity in terms of the invariants 

U n -- u ,  - O n = (uh# +vh r + whs)(h2q + h2r +[}2r-2h.,.2)-~ 

The contact discontinuity [9, p. 38] is given by the equations 

[P] =P2-Pl  =0, uihq + uihr + w i h s = O ,  i= 1, 2 

where the subscript i denotes the values of  quantities on different sides of  the force discontinuity. 
The shock-wave equations have the form 

[uo]=0,  [pu. ]=0,  [p+pu2]=O, [u~+l]=O 

where uo is the tangential component of the velocity vector. The last equation is equivalent to the 
Hugoniot condition. The first equation defines h for specified velocity jumps 

hql[ u] = hrl[U ] = [~-2 r2hsl[w] 

Zemplen's theorem holds for the submodel considered. For state 1 I onll > cl in front of the shock- 
wave front, and for state 2 I un2 [ > c2 behind the shock-wave front. 

4. G R O U P  C L A S S I F I C A T I O N  OF  T H E  S U B M O D E L  

System (1.2) with arbitrary elementsA = A (p, p), 13 allows of the following equivalence conversion 

q'=a~q, r '=a?r,  u'=alu, u ' = a ~ ,  p ' = a 2 p ,  p'=a~a2(P+a3) 

A" =: al2a2A, s" = als, ~" = al~ 

By choosing the parameter a 1 we can make 13' = 1. Hence, the parameter 13 of submodel (1.2) is 
unimportant. 

The result of the group classification of system (1.2) is shown in Table 1, while N is the number of 
the expansion from [1, Table 1]. The nucleus N = 1 occurs in all five Lie algebras, and R is the 
dimensionality of the algebra. All the algebras are a factor in the normalizer algebras of subalgebra H, 
in the corresponding algebras with special functions A [1, Table 1], with respect to H. The functions g, 
encountered in Table: 1, are arbitrary. 

Table 1 

N 

1 
3 
9 

11 
13 

g(P, P) 
pg(pp-l) 

g(p) 
P 
o 

Operators 

Ir~ =0~, Y2=a,} 
z~ 
Zi 

Zp, Zt 
zs<~) = pg'~,)ap + g~,)a~ 

2 
3 
3 
4 

o o  

Table 2 

Basis 

1,2 
2+al 

1 

Nor 

=2.1 
2.1 
2.1 

Subalgebras from L 11 

1,7,4+!0 
¢(1--4--10,7+~4+ 10) 

1,7+[~(4+1o) 

Subaigebras 
from [1, 
Table 6] 

3.9 o 
-2.7 

-2.11 

Aut Ltt 

F 
All 
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The kernel of  the allowed algebras is an Abel algebra. Hence, the optimum system of subalgebras 
is obvious, since there are no internal automorphisms. The progress of the subalgebras into the algebra 
Ll l  and the establishment of similarity ( - )  with the subalgebras of [1, Table 6] is important. This 
correspondence is given in Table 2 using conversions from Aut L11 [1, Table 3]. In Table 2 we show the 
number of subalgebras from the corresponding tables and a number of operators. In the column headed 
Nor we show the number (r, i) of  the subalgebra, which is a normalizer. 

5. S I M P L E  S O L U T I O N S  

The invariant solution in the kernel is specified by functions that are independent o fq  and s. System 
(1.2) can then be integrated u = Uo + D-l  f prdr, u = Dr-l p -1, w = Br -2 - 1, S = So, p = f(p).  

We have 

P 
D2r-2p -2 + B213-2r -2 + I(p) = C 2, l(p) = 2~ p- l f ' (p)dp ~> 0 (5.1) 

0 

where u0, So, D, B, C are constants. 

Theorem 5.1. For a normal gas Eq. (5.1) defines a two-valued function p(r), defined in the interval r 
/> r0 > 0. One of the branches p > p(r0) = P0 increases monotonically, and the radial velocity for this 
is subsonic. The other branch p < P0 decreases monotonically and the radial velocity for this is supersonic. 

Proof. For a normal gas the following relations hold [9, p. 101] 

I - c 0  as p - c 0 ;  I - c * *  as p-c**;  l p>0 ,  f ' = c  2, / " > 0  

Equation (5.1) defines a bounded function, since, as p ~ o% the equation is not satisfied. As r ~ oo 
we have two limits: a non-zero limit p ~ Pl > 0, I(pl) = C 2 and a zero limit rp ~ D C  -1. Thus, (5.1) 
defines a bounded two-valued function. As r ~ 0 and for bounded values of p, Eq. (5.1) is not satisfied. 
The branches p(r) are then defined in the set r t> r0 > 0. 

The quantity rdcan be obtained as the minimum of the function 

r 2 = R(p) = (D2p -2 + B21~-2)(C2 - / (p ) )  -I 

We have 

R'(p) = 2(C 2 - 1(0)) -2 D2p-3[F(p)- C 2 ], F(p) = l(p) + f '(p)(1 + B2p2~-2D -2) 

Since F'  > 0, a unique root Po of the equation F(p) = C 2 exists. Then ro 2 = R(po). 
When p > po, r > rowe havef ' (p)  > f'(Po), pr > poro . Then 

c 2 - o  2 = f ' ( p ) - D 2 r - 2 p  2 > f ' ( po ) -D2ro~P o  2 = 0  and R'(p)>0,  v < c  

When p < Po, r > ro we have 

C 2 - V  2 < D 2 (ro--2po 2 _ r - 2 p - 2 )  = D 2 [l(p) - l(p 0) + B2~ -2 ( r  -2 - ro 2 )] < 0 

and R'(p) < 0, u > c. 
In physical variables the solution is given by the formulae 

r 

U = t + D  -I~prdr+uo,  V = D r - l p  -I, W = B r  -I 
ro 

It defines the flow of gas from a cylindrical source r ~< r0 with a twist W~ 0 and a constant acceleration 
along the x axis. 

For many submodels isobaric flows give a considerable class of exact solutions [2]. This is not the 
case in the submodel considered. 
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Theorem 5.2. Isobaric flows of submodel (1.2) are specified by the formulae 

u = s + a ( r ) ,  v =O, w = - l ,  p=p(r ,q+s212+sa( r ) ) ,  P=Po  (5.2) 

Proof. When p = P0 system (1.2) becomes overdetermined 

D u = - l ,  Do =l~-2r(l+w) 2, D w = - 2 r - t v ( l + w ) ,  D p = 0  

Uq +Vr + Ws +V r - 1 = 0  (D=u~q +vt~r + wt)s) 
(5.3) 

Along the streamline L: u-ldq = t)-~dr = w-lds = dx the system has four integrals 

p = p(L), r2(1 + w) = f(L),  v :~ + 1~-2r2(i + w) 2 = g2(L),  u + x = h(L) 

From the equations for a streamline we obtain three other integrals 

q - x 212 - xu = h I (L), ro - xo 2 _ ~-2xr 2(1 + w) 2 = gl(L) 

s + X - [~ arctg([ivr -I (1 + w) -I ) = fl (L) 

Eliminating the parameter x we obtain six integrals along the streamline 

P=al ,  r 2 ( l + w ) = a 2 ,  v2+[~-2r2( l+w) 2 =a3 

r(1 + w )  tg( (u  - s)[~ -!  ) + t ~  = a4, 2q + u 2 = a 5 

r(1 + w ) -  13o tg((u -- S ~ - ' )  

ru + uv 2 + [~-2r2u( 1 + w)2 = a6 

(5.4) 

If all ai are constants, the equations of system(1.2) are contradictory. Suppose ai(~. ) and assume that 
s = s(q, r, L) in inte[,a'als (5.4). The equality (aar 2 - a2213-2) 1/2 + (as - 2q) ~cz a3 = a6, which connects the 
independent variables L, q, r, follows from (5.4). It is satisfied identically only when a 2 = a 3 --- a6 = 0. 
Then, t) = 0 and w := 1, and (5.2) follows from (5.3). 

In physical variables we obtain the solution 

U=~O+a(r ) ,  V=0,  W = O , p = p o  

p = p(r,  x + ( 6 0  - t) a (r) + [$0(130/2 - t)) 

which describes the non-isentropic flow round a plane wedge 01 < O < 02 by a rectilinear steady flow 
of particles moving :parallel to the x axis (the generatrix of the wedge). Here the function a(r) must be 
monotonic and is defined for all values of r, while the density distribution over r is arbitrary and 
time-dependent. 

6. T H E  N E C E S S A R Y  C O N D I T I O N S  F O R  A S O L U T I O N  TO E X I S T  
W I T H O U T  A S I N G U L A R I T Y  ON T H E  AXIS 

Submodel (1.2) may have a singularity when r = 0. The solution without singularities is represented 
by a series in negati[ve powers of the variable r, if the series r (summation is over integers k ~ 0) 

U=•ukr  k, v = r ~ , v k r  k, W=•Wk rk, p = E p k r  k 

t' = P(q)+ r2~,Pk rk, A = ]~Akr k, A, = (k!) -I D~rA(p,p)Ir__.0= (6.1) 

_ .  .... 4 = . . . .  

Quantities with a zero subscript satisfy the equations 
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D o u o = . - p ' ~ l p ' - l ,  D0u0 = -o o2 + ~-2(! + Wo)2 - 2p~Ipo 

Dow° + 1]2PolPos = -20o(I + Wo)' D0p° = AolP°UoP" (6.2) 

Uoq + Wos = -20 0 - Ao-t Uo P', D O = Uo~ q + Wo~,. 

This system is of the Cauchy type in the variable s if Wo ~ 0. The quantities P'(q),  Ao  = A (P, Po) and 13 
are arbitrary elements of  system (6.2). 

The quantities uk, ok, wk, Pk, Pk, k > 0 are found from the linear system of equations 

Douk = --(kv o + uoq )uk - uos w,  + P'po2pk + g~ 

Dou/c = --u OqUk - -  (k + 2): o u t~ + (21] -2 (l + w o ) - u  0s)wt¢ + 2 pop~Zpk - (k + 2)p k + g2 k 

Dowk ~ -I (6.3) + 1] Po P~s = -woquk - 2(I + w o): k - (Wos + (k + 2), o)Wk + 1~2Po2Posp~ + g~ 

DoPk = (po:,o -I P" - Poq - P o , ' k  + ( - k , ,  o + Ao-'UoP" - PoUo -  P')pk + 

u ~  + w ~  =-Ao-lp'u/c - ( k  + 2)u/c + u0Ao-2A~P'pk + g~ 

where g/kare expressed in terms of u,, oy, w;, Pi, Pj 1, (J = 0 . . . . .  k - 1). 
• 1 , t  - -  • 

The systems of equations (6.3) are Cauc~y type systems m the variable s if w0 ~ 0. Hence, the formal 
series (6.1) can be constructed. These series specify the necessary asymptotic behaviour of  the solution 
without a singularity close to the r = 0 axis. 

Series (6.1) can also be constructed for invariant ~s-solutions. In this case system (6.2) has integrals 
when u0 ~ 0 

A(P, Po)dPo =PodP ~ S(P, Po)=So, or  

w o = -1 + CuoPo 

u~) + I(P) = D -  2q, I = 2[ G -Z (P)dP > 0 

Po = G(P) 
(6.4) 

The remaining equations define 

_ 2 - 2  2 2 2 Vo : - (Uoq +uoPolPov)/2, Po - P o (  C 1] uoPo -Vo -UoUo,t)/2 

All the quantities with a zero subscript are defined, apart from an arbitrary function P(q) and constants 
So, C and D. 

Quantities with the subscript k are found from (6.3). The first two equations give ok and Pk. The 
remaining equations form a Cauchy type system for finding uk, Wk, Pk. 

Thus, the formally invariant arsolution is determined with an arbitrariness in three constants and 
one function. 

It follows from integral (6.4) that a solution is only possible when q <~ D/2. When q = D/2 the solution 
describes a state of vacuum. Hence, the cgs-solution in the region of the r = 0 axis describes flow into 
a vacuum. 

When P"  = 0 we can consider the invariant aq-solution. System (6.2) can be integrated 

P = P o ,  p o = R  

Wo = 1 C~ 2 + Bsin(21]_is + q~), Uo = _1]_tBcos(21]_ls + ~ )  

where Po, R, C, B, D, • are constants. 
In physical variables the solution defines flow that is n-periodic in 0 with a pressure that is independent 

of 0, x, t close to the r = 0 axis. 



A submodel of the rotational motions of a gas in a uniform force field 251 

This research was supported financially by the Russian Foundation for Basic Research (96-01-01780). 

R E F E R E N C E S  
1. OVSYANNIKOV, L. 'E, The Podmodeli program. Gas dynamics. Pr/k/. Mat. Mekh., 1994, 58(4), 30--55. 
2. OVSYANNIKOV, L. V., The isobaric motion of a gas. Diff. Urav., 1994, 30(10), 1792-1799. 
3. OVSYANNIKOV, L. V., A singular vortex. Zh. PriM. Mekh. Tekh. Fiz., 1995, 36(3), 45-52. 
4. MEI.ESHKO, S. V., Group classification of the equations of a gas motion in a constant force field. Zh. Prikl. Mekh. Tekh. Fiz., 

1996, 37(1), 42--47. 
5. MELESHKO, S. V., Group classification of the equations of two-dimensional gas motion. Pr/k/. Mat. Mekh., 1994, 58(4), 56--62. 
6. KHABIROV, S. V., A submodel of helical motions in gas dynamics. Pr/k/. Mat. Mekh., 1996, 60(1), 53--65. 
7. KHABIROV, S. V., .~m analysis of invariant submodels of rank three of the equations of gas dynamics. DoM. Akad. Nauk 

SSSR, 1995, 341(6), 764-766. 
8. GANTMAKHER, E R., Matrix Theory. Nauka, Moscow, 1966. 
9. OVSYANNIKOV, L. V., Lectures on the Fundamentals of Gas Dynamics. Nauka, Moscow, 1981. 

Translated by R.C.G. 


